ECE 365: Data Science and Engineering Spring 2020

http://courses.engr.illinois.edu/ece398BD

Instructors: Venu Veeravalli, and Suma Bhat.

Course Coordinator: Venu Veeravalli

Prerequisites: ECE 313 (or campus equivalent on basic undergrad probability) and some basic linear algebra. General mathematical maturity expected of engineering undergraduates.

Textbook: None. Relevant course notes will be handed out to the students.

Target Audience: Juniors or Seniors

Outline: Big Data is all around us. Petabytes of data is collected by Google and Facebook. 24 hours of video is uploaded on YouTube every minute. Making sense of all this data in the relevant context is a critical question. This course takes a holistic view towards understanding how this data is collected, represented and stored, retrieved and computed/analyzed upon to finally arrive at appropriate outcomes for the underlying context. The course is divided into three parts, with the first part focusing on foundations of machine learning, and the remaining two on specific application areas. Each application topic is covered at four discrete levels.

- We start with the context of where the data comes from, how it is acquired, what are the biases and noise levels in the data leading to statistical and physical models of the data acquired.
 - Appropriate data representation mechanisms and distributed storage and computing architectures are discussed next. Based on the type of the data, different compression/coding methods are appropriate. Images, videos, genomic data, medical imaging data, smart grid data, each bring their own unique characteristics which can be harnessed towards efficient representation.
- Once data is stored and represented efficiently, we look for the right statistical and algorithmic tools to analyze the data. Spectral methods (including Fourier methods and PCA), Clustering algorithms, SVM, Mining algorithms are studied in the specific context of the data.
- Finally, the analyzed data leads to appropriate inferences or visualizations as appropriate to the physical problem we started out with. This closes the loop bringing utility to the original setting and context in which the data was acquired.

For Fall 2019 the application areas will be:

- Introduction to natural language processing: Automatic processing of natural language texts to make sense of the meaning conveyed is of central importance to many human-centered applications of today. In this part of the course we will see how modeling different levels of natural language leads to making sense of the patterns of meaning conveyed by words. We will work with state-of-the-art approaches to natural language processing using publicly available datasets.
- Text Analysis: Text data constitutes and important component of data available today in all avenues of the Internet ranging from web pages, blog articles, product reviews, to emails and scientific literature. Because they are primarily generated by humans, they constitute a crucial source of semantically rich information such as people's opinions and preferences. In this part of the course, we will build on the concepts learned in the second part of the course and explore a range of heuristic and statistical approaches to analyzing text data to uncover different aspects of semantic content expressed via text.

Course Plan

Part 1 (Weeks 1-5): Foundations of Machine Learning

Lecture 1: Introduction to the course; Review of Linear Algebra and Probability

Lecture 2: k-Nearest Neighbor Classifiers and Bayes Classifiers

Lecture 3: Linear Classifiers and Linear Discriminant Analysis

Lecture 4: Naïve Bayes, Kernel Tricks

Lecture 5: Logistic Regression, SVM and Model Selection

Lecture 6: K-Means Clustering and Applications

Lecture 7: Linear Regression and Applications

Lecture 8: SVD and Eigen-Decomposition

Lecture 9: Principal Component Analysis

Lecture 10: Optimization Techniques for Machine Learning, Q&A

Labs (Weeks 1-5)

Lab 1: Introduction to Python and the Canopy environment

Lab 2: Linear Classification: k-NN and LDA

Lab 3: Linear Classification: SVM

Lab 4: Clustering and Linear Regression

Lab 5: Eigen-Decompositions, SVD and PCA

Grading: 30% pre-lab quizzes (in class), 70% labs and lab reports.

Part 2 (Weeks 6-10): Natural Language Processing

Lecture 1: Introduction to NLP. Words as units of text.

Lecture 2: Words in isolation: Bag-of-words models for text processing

Lecture 3: Text as word sequences: Language modeling

Lecture 4. Sequence labeling

Lecture 5: Understanding meaning: Lexical Semantics

Lecture 6: Distributional and distributed semantics

Lecture 7: Discourse

Lecture 8: Application: Machine translation

Lecture 9: Application: Machine translation

Lecture 10: Non-English NLP and Recap

Labs

Lab 1: Word frequency distributions and vocabulary curves

Lab 2: Text classification

Lab 3: Language Modeling

Lab 4: Word-embeddings

Lab 5: Machine translation

Grading: 30% quizzes (in class), 70% labs and lab reports.

Part 3 (Weeks 11-15): Text Analysis

Lecture 1: Word context and similarity

Lecture 2: Semantic relations

Lecture 3: Expectation Maximization algorithm

Lecture 4. Probabilistic topic models

Lecture 5: Document and Term clustering

Lecture 6: Clustering evaluation

Lecture 7: Sentiment and opinion representation

Lecture 8: Sentiment classification and rating prediction

Lecture 9: Context of text and contextual mining

Lecture 10: Iterative topic modeling

Labs

Lab 1: Word association mining and analysis

Lab 2: Topic mining and analysis

Lab 3: Text clustering

Lab 4: Opinion mining and sentiment analysis

Grading: 30% pre-lab quizzes (in class), 70% labs and lab reports.